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Abstract

Heat transfer between surfaces at close vicinity has important applications in nanoscale energy conversion devices and near-field scan-
ning thermal microscopy. The present paper describes a comprehensive investigation of the radiation energy transfer between two semi-
infinite parallel plates at different temperatures, involving silicon with varying dopant concentrations, when the distance of separation is
from 10 lm down to 1 nm. The net radiation heat flux is calculated by means of the fluctuational electrodynamics. The dielectric function
of silicon is modeled using a Drude model, considering the effects of temperature and doping level on the carrier concentrations and
scattering times. The calculated results show that the dopant concentration strongly affects the radiation heat flux when the two media
are separated at nanometer distances. For heavily doped silicon plates separated at a distance of 1 nm, the present study predicts a radi-
ation energy flux of over five orders of magnitude greater than that between two blackbodies placed far apart. Furthermore, the radiation
energy flux can be more than ten times larger than the conduction heat flux of air at the atmospheric pressure, and the radiation heat
transfer coefficient may exceed 1 MW m�2 K�1. The theoretical understanding gained from the present research will facilitate the design
of experiments that utilize near-field radiation to enhance heating or cooling at the nanoscale for applications such as thermal control in
nanoelectronics, energy conversion, and nanothermal probing and manufacturing.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Radiation heat transfer between two thermally emitting
objects at short distances, when the vacuum gap separating
the two solids becomes smaller than the characteristic
wavelength of thermal radiation, depends on the distance
of separation [1,2]. This is a distinct feature between
near-field and far-field radiation heat transfer. The spacing
effect is a combined result of wave interference and photon
tunneling (due to evanescent waves). The effect of wave
interference can be understood by plotting the spectral
transmittance of a thin dielectric film versus the film thick-
ness and observing the oscillations of transmittance due to
constructive and destructive interferences [3,4]. An evanes-
cent wave can arise from total internal reflection when light
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2005.09.037

* Corresponding author. Tel.: +1 404 385 4225; fax: +1 404 894 8496.
E-mail address: zhuomin.zhang@me.gatech.edu (Z.M. Zhang).
is incident from a prism to a vacuum at incidence angles
greater than the critical angle. Although no energy is trans-
ferred into the vacuum, there exists an electromagnetic field
that decays exponentially away from the interface. When
another prism is brought to close vicinity of the first one,
a backward evanescent wave emerges due to reflection at
the surface of the second prism. Part of the incident energy
will transmit into the second prism via interaction of the
two evanescent waves that decay in opposite directions.
From the particle point of view, photons (i.e., light corpus-
cles) can tunnel through the vacuum spacing, and the prob-
ability of tunneling increases as the spacing is reduced. For
conducting or absorbing materials, there exist additional
evanescent waves (or modes) that can transmit the energy
of the thermally induced fluctuating electromagnetic fields
from one object to another at very short distances [5].
Therefore, at nanometer distances, the effect of photon tun-
neling may dominate the energy transfer process so that the
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Nomenclature

c speed of light in vacuum, 2.998 · 108 m s�1

D density of states, s rad�1 m�3

d vacuum gap thickness, m
E electric field vector, V m�1

e electron charge, 1.602 · 10�19 C
G dyadic Green function, m�1

H magnetic field vector, A m�1

hr radiation heat transfer coefficient, W m�2 K�1

�h Planck�s constant over 2p, 1.055 · 10�34 J s
I unit dyadic
j fluctuating electric current density, A m�2

k wavevector, m�1

kB Boltzmann�s constant, 1.381 · 10�23 J K�1

m* effective mass, kg
m0 electron rest mass, 9.109 · 10�31 kg
N concentration (number density), m�3

n refractive index
q00net net energy flux, W m�2

q00x spectral energy flux, W m�2 s rad�1

r vector in the radial direction, m
r reflection coefficient
S Poynting vector, W m�2

T temperature, K
t transmission coefficient
u energy density, J m�3

ux spectral energy density, J m�3 s rad�1

Z(b) exchange function defined in Eq. (11)

Greek symbols

a absorption coefficient, a = 4pj/k, m�1

b parallel wavevector component, m�1

c wavevector component in z-direction, m�1

e relative permittivity (i.e., dielectric function)
e0 permittivity of vacuum, 8.854 · 10�12 F m�1

H mean energy of an oscillator, J
j extinction coefficient
k wavelength in vacuum, m
l mobility, cm2 V�1 s�1

l0 permeability of vacuum, 4p · 10�7 H m�1

q reflectivity at the interface
s carrier scattering time, s
x angular frequency, rad s�1

Subscripts

0 vacuum
1 medium 1
2 medium 2
A acceptor
D donor
d defect
e electron
evan evanescent wave
h hole
l lattice
prop propagating wave

Superscripts
0 value at 300 K
p p polarization
s s polarization
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net heat flux will be much greater than that predicted by
the Stefan–Boltzmann law between two blackbodies sepa-
rated at large distances [5–10].

Nanoscale thermal radiation has important applications
in microscale energy conversion devices [11–13] and in
near-field scanning thermal microscopy [14–17]. Recent
studies of negative index materials suggested some unique
opportunities that could be used to enhance photon tunnel-
ing through longer distances [18,19]. The calculation of
near-field radiation heat transfer between dielectric materi-
als is rather straightforward [1,4,11]. Most of the theoreti-
cal works were performed on the prediction of the net heat
flux between two parallel metallic plates using a Drude
model for the dielectric function [5,7–10]. Several studies
also considered the nanoscale energy transfer between a
sphere and a surface [5,10,20]. Nanoscale radiation heat
transfer between crystalline dielectrics can be significantly
enhanced when absorption is considered [6,12,13,21,22].
This is particularly true when the dielectric materials sup-
port low-frequency surface waves or surface phonon polar-
itons. A surface wave is an electromagnetic wave that
propagates along the interface but the amplitude decays
exponentially into both media. The spectral heat flux can
be enhanced by several orders of magnitude by resonance
excitation of surface waves coupled with photon tunneling
at the nanoscale [6,21]. While many normal metals support
surface waves through surface plasmon polaritons, the
plasma frequencies are usually much higher than the char-
acteristic frequencies of thermal sources. Consequently, the
near-field enhancement is not so large for good conductors.
On the other hand, semi-metals, which have lower electric
conductivity, may greatly enhance radiation heat flux at
nanometer scales [8,9].

The interest in studying nanoscale radiation heat trans-
fer with silicon emerges because silicon is the most exten-
sively used material in MEMS/NEMS and many other
microelectronic devices. Radiation heat transfer in these
devices may be important when their characteristic dimen-
sions are on the nanometer scales. More recently, atomic
force microscope (AFM) cantilevers with integrated heat-
ers and with nanoscale sharp tips made of doped silicon
have been developed for thermal writing and reading [23].



C.J. Fu, Z.M. Zhang / International Journal of Heat and Mass Transfer 49 (2006) 1703–1718 1705
These heated cantilever tips may provide local heating for
the study of radiation energy transfer between two objects
separated by a few nanometers. It is critical to quantita-
tively predict the near-field radiation heat flux between
doped silicon. For silicon, the infrared properties are
strongly dependent on the temperature and dopant concen-
tration. Nanoscale radiation heat flux depends largely on
the optical properties of the materials. Therefore, it is
imperative to study the dependence of the net heat flux
on the carrier concentration and scattering time, which
are functions of the dopant concentration and temperature.
The only work on the near-field heat transfer between
doped silicon to date was given by Marquier et al. [22],
who showed that heat transfer can be significantly
enhanced with heavily doped silicon. However, they
assumed that all the impurities are ionized (that is, the dop-
ant concentration is the same as the carrier concentration)
and did not consider the effect of temperature on the scat-
tering time and the carrier concentration.

The present study focuses on the near-field radiation
heat transfer between two closely spaced semi-infinite
media with parallel and smooth surfaces, especially with
doped silicon, as shown in Fig. 1a. The two media, each
at thermal equilibrium but at different temperatures T1
z

k2
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k1
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Fig. 1. Schematic drawings of the study of near-field thermal radiation:
(a) radiation heat transfer between two closely spaced parallel plates
separated by a vacuum gap of thickness d, and (b) the electric field near the
surface due to thermally induced charge fluctuation or dipole movement.
Here, cylindrical coordinates are used, and the z-direction is perpendicular
to the interfaces. The wavevectors k1 or k2 are composed of b (parallel to
the interfaces) and c1 or c2 (normal to the interfaces).
and T2, are separated by a vacuum gap of width d ranging
from several tens of micrometers down to 1 nm. The net
radiation energy flux is calculated by means of the fluctua-
tional electrodynamics to be discussed in the next section.
For non-magnetic, homogeneous, and isotropic media,
the complex dielectric function is the only property needed
to fully characterize the optical behavior. However, the
dielectric function is a comprehensive function of fre-
quency and temperature for a given material. In the present
study, the dielectric function of silicon is described by a
Drude model, considering the effects of temperature and
doping level on the concentrations and scattering times of
electrons and holes. The theory of nanoscale radiation heat
transfer is presented in Section 2, followed by a description
of the model of the dielectric function of doped silicon in
Section 3. Detailed results of radiation heat transfer for dif-
ferent doping levels and source temperatures are provided
in Section 4, after a brief discussion on the validation of
the dielectric function model. An effort is made to explain
the mechanisms of heat transfer enhancement at the nano-
scale and the dependence of near-field radiation on the
optical properties of materials.

2. The fluctuational electrodynamics

Conventional radiation heat transfer theories [2,3] break
down in the near field. The foundation of fluctuational
electrodynamics is the fluctuation–dissipation theorem, in
which thermal radiation is originated from the random
movement of charges or dipoles inside the medium at tem-
peratures exceeding zero kelvin. As shown in Fig. 1b, the
electromagnetic field at any location is a superposition of
contributions from all point sources in the radiating region.
The electromagnetic waves deep inside the medium will
attenuate due to absorption (i.e., dissipation) inside the
medium. The fluctuational electrodynamics was established
by Rytov in the 1950�s (see Ref. [24]), and thereafter, has
been applied by many researchers [6–10,12,13,25,26] to
study near-field thermal radiation. The fluctuation–dissipa-
tion theorem has also been used to study the van der Waals
forces and non-contact friction at the nanoscale [27–29].
Considering the majority of the heat transfer community
may be unfamiliar with this approach, a brief derivation
is provided in this section with key equations for calculat-
ing the energy density near a surface and the net heat trans-
fer between parallel plates at different temperatures. The
integral formulation will help interpret the computational
results for different doping levels of silicon and in both
the far-field and near-field limits. The basic assumptions
used in the present study as depicted in Fig. 1 are as fol-
lows: (1) Each medium is semi-infinite and at a thermal
equilibrium, presumably due to a sufficiently large thermal
conductivity of the solid. (2) Both media are non-magnetic,
isotropic, and homogeneous, so that the frequency-depen-
dent complex dielectric function (relative permittivity) e1

or e2 is the only material property that characterizes the
electrodynamic response and thermally induced dipole
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emission of medium 1 or 2. (3) Each surface is perfectly
smooth, and the two surfaces are parallel to each other.

Because of axial symmetry, cylindrical coordinates can
be used so that the space variable x ¼ rþ z ¼ rr̂þ zẑ. Con-
sider a monochromatic electromagnetic wave originated
from medium 1 to 2, as shown in Fig. 1a. The complex
wavevectors in media 1 and 2 are k1 and k2, respectively,
with k2

1 ¼ e1k2
0 and k2

2 ¼ e2k2
0, where k0 ¼ x=c ¼ 2p=k is

the magnitude of the wavevector in vacuum. Here, x is
the angular frequency, c is the speed of light in vacuum,
and k is the wavelength in vacuum. The monochromatic
plane wave can be expressed in terms of a time and fre-
quency dependent field, eikj�xe�ixt, where j = 0, 1, or 2
refers to vacuum, medium 1, or medium 2, respectively.
The phase matching boundary condition requires that the
parallel components of all three wavevectors be the same
[4]. In the present study, b is used for the parallel compo-
nent of the wavevector and cj denotes the z-component of

the wavevector kj. Thus kj ¼ br̂þ cjẑ and cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

j � b2
q

.

Because e1 and e2 are generally complex, k1 and k2 may
be complex. Since only real and positive frequencies (x)
are considered, k0 is always real and positive. The spatial
dependence of the field in air can be expressed as eibreic0z.
Because the amplitude must not change along the r-direc-
tion, b must be real. Note that both r and b are positive

in the cylindrical coordinates. Hence, c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � b2
q

will

be real when 0 6 b 6 x/c and purely imaginary when
b > x/c. An evanescent wave exists in vacuum if c0 is imag-
inary, i.e., when b > x/c. In this case, the field will decay
exponentially in the z-direction. Understanding the nature
of evanescent waves is essential to the interpretation of
photon tunneling and near-field radiation.

The random thermal fluctuations produce a space-time
dependent electric current density j(x, t) inside the medium
whose time average is zero. It can be decomposed into the
frequency domain using Fourier transform, which gives
j(x, x). With the assistance of the dyadic Green function,

Gðx; x0;xÞ, the induced electric field in the frequency
domain can be expressed as a volume integration [24]:

Eðx;xÞ ¼ ixl0

Z
V

Gðx; x0;xÞ � jðx0;xÞdx0 ð1Þ

where l0 is the magnetic permeability of vacuum and the
integral is over the region V that contains the fluctuating
sources. The physical significance of the Green function
is that it is a transfer function for a current source j at loca-
tion x 0 and the resultant electric field E at x. Mathemati-
cally, the dyadic Green function satisfies the vector
Helmholtz equation,

r�r�Gðx; x0;xÞ � k2Gðx; x0;xÞ ¼ Idðx� x0Þ ð2Þ
where k is the amplitude of the wavevector at x, and I is a
unit dyadic. The corresponding magnetic field H(x, x) can
be obtained from the Maxwell equation, that is,

Hðx;xÞ ¼ 1

ixl0

r� Eðx;xÞ ð3Þ
The spectral energy density of the thermally emitted
electromagnetic field in vacuum can be calculated from
[30]

uxðx;xÞ ¼
e0

4
Eðx;xÞ � E�ðx;xÞh i þ l0

4
Hðx;xÞ �H�ðx;xÞh i

ð4Þ

where e0 is the electric permittivity of vacuum, h i denotes
the ensemble average of the random currents, and * signi-
fies complex conjugate. The emitted energy flux can be
expressed by the ensemble average of the Poynting vector
[30], hence,

Sðx;xÞh i ¼ 1

2
Re½Eðx;xÞ �H�ðx;xÞ�h i ð5Þ

To evaluate the ensemble average, the spatial correlation
function between the fluctuating currents at two locations
x 0 and x00 inside the emitting medium is needed and is given
in [24] as

jmðx0;xÞj�nðx00;xÞ
� �

¼ 4xe0 ImðeÞHðx; T Þ
p

dmndðx0 � x00Þ

ð6Þ

where Im takes the imaginary part of the dielectric func-
tion, dmn is the Kronecker delta function, d(x 0 � x00) is the
Dirac delta function, and H(x, T) is the mean energy of
a Planck oscillator at frequency x in thermal equilibrium
and given by [31]

Hðx; T Þ ¼ �hx
expð�hx=kBT Þ � 1

ð7Þ

where �h = h/2p is Planck�s constant over 2p and kB is the
Boltzmann constant. In Eq. (7), the term �hx/2 that ac-
counts for vacuum fluctuation is omitted since it does not
affect the net radiation heat flux [31]. The calculated energy
density should be regarded as being relative to the vacuum
ground energy density. A factor of four has been included
in Eq. (6) to be consistent with the conventional definitions
of the spectral energy density and Poynting vector
expressed in Eqs. (4) and (5), respectively, since only posi-
tive values of frequencies are considered here [30]. The local
density of states or density of modes is defined by the
following relation [25,26]:

uxðz;xÞ ¼ Dðz;xÞHðx; T Þ ð8Þ
The energy density and density of states are independent of
r. The physical significance of D(z, x) [m�3 s rad�1] is the
number of modes per unit frequency interval per unit
volume.

The Green function depends on the geometry of the
physical system and for two parallel semi-infinite media
shown in Fig. 1, it takes the following form [32]:

Gðx; x0;xÞ ¼ i

4p

Z 1

0

bdb
c1

ŝts
12ŝþ p̂2tp

12p̂1

� �
eic2z�ic1z0eibr̂�ðr�r0Þ

ð9Þ
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where x ¼ rr̂þ zẑ and x0 ¼ r0r̂þ z0ẑ, ts
12 and tp

12 are the
transmission coefficients from medium 1 to medium 2 for
s and p polarization, respectively, and the unit vectors
ŝ ¼ r̂� ẑ, p̂1 ¼ ðbẑ� c1r̂Þ=k1, and p̂2 ¼ ðbẑ� c2r̂Þ=k2. If
the interest is to calculate the radiation field from medium
1 to vacuum, ts

12 and tp
12 can be replaced by the Fresnel

transmission coefficients between medium 1 and vacuum,
i.e., ts

10 and tp
10. By using Eqs. (6) and (9), one can evaluate

Eqs. (1) and (3) to obtain the electric and magnetic fields;
consequently, the energy density, flux, and density of states
can be calculated. For example, the local density of states
in vacuum near the surface medium 1 can be expressed in
two terms [26]:

Dðz;xÞ ¼ DpropðxÞ þ Devanðz;xÞ ð10Þ

where

DpropðxÞ ¼
x

p2c2

Z x=c

0

bdb
2c0

ð2� qs
01 � qp

01Þ ð10aÞ

and

Devanðz;xÞ ¼
1

p2x

Z 1

x=c

e�2z Imðc0Þb3 db
2 j c0 j

½Imðrs
01Þ þ Imðrp

01Þ�

ð10bÞ

where r01 is the Fresnel reflection coefficient and q01 = jr01j2
is the (far-field) reflectivity at the interface between vacuum
and medium 1, superscripts s and p signify s-polarization
(TE wave) and p-polarization (TM wave), respectively.
Note that rs

01 ¼ ðc0 � c1Þ=ðc0 þ c1Þ and rp
01 ¼ ðe1c0 � c1Þ=

ðe1c0 þ c1Þ. It should be noted that, in deriving Eq. (10),
the imaginary part of the permittivity (of medium 1) in
Eq. (6) has been combined with other terms containing
the relative permittivity of medium 1. It should be men-
tioned that no matter how small Im(e1) may be, such as
for a dielectric, it must not be zero for the semi-infinite
assumption to hold. The contribution of propagating
waves given by Eq. (10a) is independent of z and exists in
both the near and far fields; whereas the contribution of
evanescent waves decreases with increasing z. In the far-
field limit, the contribution of the propagating waves is
responsible to thermal emission and one can see the direc-
tional-spectral emissivity term in Eq. (10a), i.e., e0sx;1 ¼
1� qs

01 and e0px;1 ¼ 1� qp
01. As z becomes smaller and

smaller, the contribution of evanescent waves near the
surface may dominate when Imðrp

01Þ is large as in the case
of surface phonon polaritons [25], resulting in very large
energy densities near the surface.

The spectral energy flux from medium 1 to medium 2
is calculated by projecting the time-averaging Poynting
vector from Eq. (5) into the z-direction, and hence
[6,9],

q00x;1�2 ¼
Hðx; T 1Þ

p2

Z 1

0

Z12ðbÞbdb ð11Þ
where

Z12ðbÞ ¼
4Reðc1ÞReðc2Þ c2

0ei2c0d
�� ��

ðc0 þ c1Þðc0 þ c2Þð1� rs
01rs

02ei2c0dÞ
�� ��2
þ

4Reðe1c�1ÞReðe2c�2Þ c2
0ei2c0d
�� ��

ðe1c0 þ c1Þðe2c0 þ c2Þð1� rp
01rp

02ei2c0dÞ
�� ��2

is called the exchange function in the present study. Note
that Re takes the real part of the complex variable. Eq.
(11) includes the contributions from both propagating
waves and evanescent waves (photon tunneling). The
expression of q00x;2�1 is readily obtained by replacing
H(x, T1) in Eq. (11) with H(x, T2) since the exchange
function is reciprocal: Z12(b) = Z21(b). The units of q00x is
expressed as [W m�2 s rad�1] rather than [J m�2 rad�1] to
keep the integrity of the frequency units [s rad�1]. This is
commonly done when wavelength [lm] is used such that
the spectral radiation heat flux is expressed in
[W m�2 lm�1] [2].

The net total energy flux is the integration of
q00x;1�2 � q00x;2�1 over all frequencies, viz.

q00net ¼
Z 1

0

ðq00x;1�2 � q00x;2�1Þdx

¼ 1

p2

Z 1

0

dx½Hðx; T 1Þ �Hðx; T 2Þ�
Z 1

0

Z12ðbÞbdb

ð12Þ

Eq. (12) provides an ab initio calculation of the thermal
radiation that is applicable for both the near- and far-
field heat transfer. The contribution of evanescent waves
with imaginary c0 (for b > x/c) reduces as d increases and
is negligible when d is on the order of the wavelength.
The energy transfer can also be separated into contribu-
tions of propagating waves and evanescent waves (photon
tunneling).

The exchange function Z can be re-written using the
Fresnel coefficients and reflectivity for propagating waves
as [6,9]

ZpropðbÞ ¼
ð1� qs

01Þð1� qs
02Þ

4 1� rs
01rs

02e�i2c0d
�� ��2 þ ð1� qp

01Þð1� qp
02Þ

4 1� rp
01rp

02e�i2c0d
�� ��2 ;

b < x=c ð13Þ

Substituting Eq. (13) into Eq. (10) and noting that b =
x/c sinh, where h is the polar angle in vacuum, the integra-
tion can be evaluated in the far-field limit from h = 0 to
p/2. Note that in the incoherent limit (d� k) when the
oscillation terms are averaged,

1

j 1� rs
01rs

02e�i2c0d j2
! 1

1� qs
01q

s
02

[2,6]

It can be shown that

1� qs
01q

s
02

ð1� qs
01Þð1� qs

02Þ
¼ 1

e0sx;1
þ 1

e0sx;2
� 1
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Similar relations hold for p-polarization. From Eq. (12),
the total energy flux in the far-field limit becomes

q00net;far¼
1

4p2c2

Z 1

0

½Hðx;T 1Þ�Hðx;T 2Þ�x2 dx

�
Z p=2

0

coshsinhdh
1

1=e0sx;1þ1=e0sx;2�1
þ 1

1=e0px;1þ1=e0px;2�1

 !

ð14Þ

Eq. (14) is similar to the equation commonly found in radi-
ation heat transfer texts [2,3], except that angular frequency
is used here instead of wavelength. The wavelength integra-
tion can be obtained by converting Planck�s blackbody
intensity from �hx3dx

4p3c2ðe�hx=kBT�1Þ to 2hc2dk
k5ðehc=kBkT�1Þ. While the energy

flux includes the contributions by both polarizations, one
should not average the surface emissivity for the s and p-
polarizations and then apply the integration. Rather, one
should integrate the two polarizations separately based
on Eq. (14). Rigorously speaking, Kirchhoff �s equality be-
tween directional-spectral emissivity and absorptivity
(1 � q) [2,3] is valid only for a single polarization because
the absorptivity depends also on the polarization state of
the incoming radiation.

The expression of Z for the contribution of evanescent
waves is [6,9]

ZevanðbÞ¼
Imðrs

01ÞImðrs
02Þe�2Imðc0Þd

1� rs
01rs

02e�2Imðc0Þd
�� ��2 þ Imðrp

01ÞImðrp
02Þe�2Imðc0Þd

1� rp
01rp

02e�2Imðc0Þd
�� ��2 ;

b>x=c ð15Þ

The exchange function decays exponentially as the distance
of separation d increases. Mulet et al. [6] presented a de-
tailed comparison of the conventional radiation heat trans-
fer theory with the fluctuational electrodynamics approach.
In the present study, the term emissivity is reserved for far-
field limit only without using a generalization emissivity as
suggested in [6]. The introduction of the exchange function
facilitates the interpretation of near-field radiation heat
transfer as will be discussed later.

3. The dielectric function of silicon

The temperature range considered in the present study is
from room temperature (300 K) up to 1000 K. Hence, the
wavelength region of interest is from about 1 lm to the
very far infrared. Silicon is an indirect semiconductor and
the fundamental absorption (i.e., interband absorption)
occurs at wavelengths shorter than kg, which corresponds
to the band-gap energy Eg. For lightly doped silicon with
a dopant concentration (number density) less than
1015 cm�3 or a room-temperature electrical resistivity
greater than 10 X cm, kg varies from 1.12 lm at 300 K to
1.43 lm at 1000 K [33,34]. Because photons with energy
greater than the band gap can excite the electrons from
the valence band to the conduction band, the absorption
coefficient (a) is large at k < kg and increases towards
shorter wavelengths. For intrinsic silicon at low tempera-
tures, the free carrier concentration is very low and thus sil-
icon is transparent for k > kg. Lattice absorption occurs in
the mid infrared and introduces some absorption for
6 lm < k < 25 lm. As the temperature increases, thermally
excited free carriers dominate the absorption at longer
wavelengths, and a 0.5-mm thick silicon wafer is essentially
opaque above 1000 K. The free carrier concentration for
intrinsic silicon is about 1010 cm�3 at 300 K and nearly
1018 cm�3 at 1000 K [34]. Free carrier absorption can also
be important for doped silicon, although not all the impu-
rities may be ionized to become free carriers. While the
Drude model has been used to study intraband absorption
for doped silicon in a large number of publications
[22,33,35–37], the spectral and temperature regions are
rather limited. It is also desirable to model the dielectric
function for different doping levels. Hebb [38] initiated
an effort to model the dielectric function of silicon with
wide ranges of dopant concentrations, wavelength, and
temperature. While the calculated absorption coefficient
is consistent with published data in the near infrared at
intermediate temperatures, some of the parameters are
inconsistent with the well-established theory or values.
Hence, the present authors have re-visited the expressions
of the carrier scattering times and concentrations, resulting
in a self-contained model as described below.

The complex dielectric function is related to the refrac-
tive index (n) and the extinction coefficient (j) by e(x) =
(n + ij)2, thus Re(e) = n2 � j2 and Im(e) = 2nj. The Drude
model of the dielectric function for both intrinsic and
doped silicon is given in the following [33,38]:

eðxÞ ¼ ebl �
N ee2=e0m�e
x2 þ ix=se

� Nhe2=e0m�h
x2 þ ix=sh

ð16Þ

where the first term on the right ebl accounts for contribu-
tions by transitions across the band gap and lattice vibra-
tions, the second term is the Drude term for transitions
in the conduction band (free electrons), and the last term
is the Drude term for transitions in the valence band (free
holes). Here, Ne and Nh are the concentrations, m�e and m�h
the effective masses, and se and sh the scattering times of
free electrons and holes, respectively, and e is the electron
charge. In the present study, the effective masses are as-
sumed to be independent of frequency, dopant concentra-
tion, and temperature. Their values are taken from [35]
as m�e ¼ 0:27m0 and m�h ¼ 0:37m0, where m0 is the electron
mass in vacuum.

Since ebl accounts for contributions other than the free
carriers, it can be determined based on the refractive index
and extinction coefficient for intrinsic silicon, i.e., ebl ¼
ðnbl þ ijblÞ2. The modification of the band structure by
impurities is neglected in the present work and this assump-
tion should not cause significant error [38]. The refractive
index of intrinsic silicon changes from about 3.6 at
k = 1 lm to about 3.42 for wavelengths longer than
10 lm at room temperature and increases slightly as the
temperature increases. The free carrier contribution to the
refractive index of intrinsic silicon is negligibly small even
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at 1000 K. Li [39] performed an extensive review of the
refractive index of silicon and fitted the available data with
an expression that is applicable for wavelength region
between 1.2 and 14 lm at temperatures up to 750 K. In
the present study, Li�s expression is used for nbl and extra-
polated to k = 1 lm and for temperatures up to 1000 K,
as recommended by Timans [33] and more recently by Lee
et al. [40]. The equations for calculating the refractive index
were included in [33,40] besides Li�s original publication [39]
and will not be repeated here. It is assumed that nbl is inde-
pendent of wavelength beyond 10 lm. It should be noted
that due to the weakness of the phonon oscillators in silicon,
lattice vibrations contribute little to the refractive index.

The absorption coefficient due to band-gap absorption
for k < kg has been obtained by Timans [41] following the
original work of MacFarlane et al. [42]. The equations for
the absorption coefficient can be found from Timans
[33,41] and using the relation a = 4pj/k, jbl at short wave-
lengths can be calculated for all temperatures. Some absorp-
tion by lattice vibrations occurs in silicon at wavelengths
between 6 and 25 lm. At high temperatures or for heavily
doped silicon, the effect of absorption by lattice vibrations
is negligible compared to the absorption by free carriers.
To account for lattice absorption, jbl can be obtained from
the tabulated extinction coefficient values given in [43] for a
slightly doped silicon sample at room temperature. A Fou-
rier-transform infrared spectrometer was used to measure
the transmittance of a single-crystal h100i silicon wafer
of 200-lm thickness and with a resistivity exceeding
1000 X cm. The measured transmittance compares well with
that calculated using the refractive index and extinction
coefficient data from [43], although the calculated transmit-
tance is slightly lower near 16 lm, suggesting that impurities
might have affected the reported extinction coefficient. Since
the effect of lattice absorption on the radiation heat transfer
is insignificant, the values from [43] are used in the present
study and are assumed independent of temperature and dop-
ant concentration. Although the Drude terms contribute lit-
tle to the dielectric function of lightly doped silicon at room
temperature, free carriers provide non-zero Im(e) at all fre-
quencies as required by fluctuation–dissipation theorem dis-
cussed in the previous section.

The remaining parameters are the carrier concentrations
and scattering times, which are functions of temperature
and dopant concentrations. The scattering time se or sh

depends on the collisions of electrons or holes with lattice
(phonons) and ionized dopant sites (impurities or defects).
The total scattering time, for the case of se, can be calcu-
lated by [34]

1

se

¼ 1

se–l

þ 1

se–d

ð17Þ

where se–l and se–d denote the electron–lattice and electron–
defect scattering times. Similarly, sh can be related to sh–l

and sh–d. At room temperature, the following expressions
can be obtained from the fitted equations for the mobilities
using the relation s = m*l/e, where l is the mobility [44]:
s0
e ¼

19:5

1þ ðND=1:3� 1017Þ0:91
þ 141 ð18aÞ

and

s0
h ¼

94

1þ ðNA=1:9� 1017Þ0:76
þ 10 ð18bÞ

where superscript 0 denotes values at 300 K, the scattering
time is in fs (10�15 s), and ND and NA are the dopant con-
centrations of donor (n-type) such as phosphorus and
acceptor (p-type) such as boron and are in cm�3. The lattice
contribution, which is independent of the carrier density,
can be obtained from the room temperature lattice mobili-
ties of 1451 cm2 V�1 s�1 for electrons and 502 cm2 V�1 s�1

for holes [45]. Therefore, s0
e–l ¼ 2:23� 10�13 s and s0

h–l ¼
1:06� 10�13 s. The values of s0

e–d and s0
h–d depend on dopant

concentrations and can be solved by combining Eqs. (17)
and (18). Note that a smaller scattering time means a higher
scattering rate (1/s ). The scattering process is dominated by
lattice scattering for lightly doped silicon, and impurity
scattering becomes important when the dopant concentra-
tion exceeds 1018 cm�3.

The temperature dependence of the scattering time is
more complicated. Theory predicted that the carrier-impu-
rity scattering times vary with T1.5 and the carrier-lattice
scattering times due to acoustic phonons vary with T�1.5

[34]. As the temperature increases, the scattering rate due
to impurity tends to decrease because the electrostatic force
that governs dopant sites becomes weaker and carriers can
move more agilely. On the other hand, the carrier-lattice
scattering rate increases as the temperature goes up because
of the increased phonon number density (occupation num-
ber). Therefore, lattice scattering dominates the scattering
process at high temperatures even for heavily doped sili-
con. Because of the relatively insignificance of impurity
scattering at high temperatures, the following formula
can be used to calculate the impurity scattering times.

se–d

s0
e–d

¼ sh–d

s0
h–d

¼ T
300

� 	1:5

ð19Þ

where T is in K. The temperature dependence of se–l and
sh–l can be more complicated since optical phonon modes
may contribute to the scattering in addition to acoustic
phonon modes. Morin and Maita [45] fitted the mobility
with experiments and indicated that the mobility due to lat-
tice scattering varies as T�2.6 for electrons and T�2.3 for
phonons. In order to obtain a better agreement with the
measured near-infrared absorption coefficients for lightly-
doped silicon [33,38,46–48], the expressions for lattice scat-
tering are modified in the present study as follows:

se–l ¼ s0
e–l T=300ð Þ�3:8 ð20aÞ

and

sh–l ¼ s0
h–lðT =300Þ�3:6 ð20bÞ

Substituting Eqs. (19) and (20) into Eq. (17) yields the scat-
tering time for any temperature and dopant concen-
trations.



Fig. 2. Scattering times, se and sh, as functions of the dopant concentra-
tions, ND and NA, respectively, at different temperatures.
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The carrier concentrations Ne and Nh in Eq. (16) depend
on temperature and dopant concentrations. For intrinsic
silicon, the thermally excited free electrons and holes are
the same and given by [49]

N 2
th ¼ NCN V expð�Eg=kBT Þ ð21Þ

where NC and NV, which are proportional to T3/2, are the
effective densities of states in the conduction band and
valence band, respectively, and Eg = 1.17 � 0.000473T2/
(T + 636) eV [49]. From the more recent book of Sze
[50], NC = 2.86 · 1019 cm�3 and NV = 2.66 · 1019 cm�3 at
300 K. When the dopant concentrations are not too high,
the free carrier concentrations can be obtained from
[34,50],

N e ¼
1

2
ND � NA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðND � N AÞ2 þ 4N 2

th

q
 �
ð22aÞ

and Nh ¼ N 2
th=N e when the majority impurities are n-type.

On the other hand, when the majority impurities are p-
type,

Nh ¼
1

2
NA � ND þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNA � N DÞ2 þ 4N 2

th

q
 �
ð22bÞ

and N e ¼ N 2
th=N h.

Eq. (22) was derived based on complete ionization,
which does not hold for heavily doped semiconductors or
at very low temperatures [50]. Furthermore, for n-type
semiconductors when ND P NC, the Fermi level is above
the bottom of the conduction band; while for p-type semi-
conductors when NA P NV, the Fermi level is below the
top of the valence band. In this case, the semiconductor
is said to be degenerated and a complicated integration is
needed to obtain the Fermi energy, carrier concentrations,
and the ionized impurity concentrations [34]. In addition to
Eg, NC, and NV, the ionization energies are needed to per-
form the integration. The ionization energy is set to be
44 meV for n-type (phosphorous) and 45 meV for p-type
(boron) doping [34]. These values can be changed for differ-
ent kinds of impurities. In the present study, the depen-
dence of the ionization energy on the doping level and
temperature is neglected for simplicity. The charge neutral-
ity requires that the total positive charges (holes and ion-
ized donors) be equal to the total negative charges
(electrons and ionized acceptors). In the present work,
the procedure and approximate equations described in
[51] are used to evaluate Ne and Nh for any given doping
concentrations and temperature regardless of the degener-
ate state. The results are within 3% of the values obtained
by numerical integration.

4. Results and discussion

4.1. Properties of silicon

It is helpful to understand how the properties of silicon
change with the doping level and temperature, in order to
analyze and interpret the nanoscale thermal radiation for
silicon devices. The scattering rates se and sh are calculated
using the procedure described in the previous section as
functions of ND and NA, respectively. The results are
shown in Fig. 2 at different temperatures. Generally speak-
ing, se > sh, suggesting that scattering rate of holes is higher
than that of electrons. This is consistent with the fact that
the electron mobility is greater than the hole mobility. At
temperatures greater than 700 K, scattering by impurities
is negligible and the scattering time is independent of the
dopant concentration. The effect of doping on the scatter-
ing time is also negligible for lightly doped silicon but
impurities cause additional scattering at 300 K when the
dopant concentration is greater than 1016 cm�3. As the
temperature increases, lattice scattering is enhanced and
this causes a reduction of the scattering time. It is interest-
ing to notice the cross-over at ND � 8.5 · 1018 cm�3

between the two se curves for 300 and 500 K. This is
because, at this doping level, the effect of enhanced lattice
scattering has been canceled out by the effect of reduced
impurity scattering as the temperature increases from 300
to 500 K.

The carrier concentrations are shown in Fig. 3 as func-
tions of the donor concentration at different temperatures.
In the present study, only a single type of dopant is consid-
ered. For p-type silicon, the dependence of carrier concen-
tration upon the acceptor concentration is similar except
that the majority of the carriers are holes rather than elec-
trons. For intrinsic silicon, Ne = Nh = Nth and increases
with temperature. At temperatures below 500 K when
1011 cm�3 < ND < 1017 cm�3, the electron concentration is
almost the same as the donor concentration, suggesting a
complete ionization and a much smaller contribution of
the thermally excited carriers. As the dopant concentration
increases, the fraction of ionization reduces and not all the
donors may be ionized to become free electrons. The hole
concentration decreases with increasing donors as required



Fig. 3. Free carrier concentrations versus doping level for n-type silicon at
different temperatures: (a) electron concentration; (b) hole concentration.

Fig. 4. Comparison of the spectral absorption coefficient of lightly doped
silicon with published data at different temperatures. Note that the data of
Boyd et al. [52] was obtained at 773 K (upper points) and interpolated for
656 K (lower points).
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by the charge neutrality. At elevated temperatures, ther-
mally excited free carrier may dominate for lightly doped
silicon. At 1000 K, Ne � Nh � Nth when ND < 5 ·
1017 cm�3. For heavily doped silicon, however, the fraction
of ionized electrons increases with temperature.

For intrinsic silicon or for lightly doped silicon at high
temperatures, Ne and Nh are essentially the same; hence,
the hole contribution will be slightly greater than the elec-
tron contribution to the dielectric function given in Eq. (16)
because se > sh. Nevertheless, the contribution of electrons
and holes are of the same order of magnitude and both
terms must be included. For doped silicon near room tem-
perature and for very heavily doped silicon at high temper-
atures, the majority of the carriers will dominate the
absorption process and the dielectric function, because
the carrier concentration will be very different. In order
to verify the dielectric function model, the predicted
absorption coefficient of lightly doped silicon is compared
with published data as shown in Fig. 4. The data for lightly
doped silicon from Rogne et al. [47] are consistent with the
models and data presented in [33,46,48]. The room temper-
ature absorption coefficient due to band-gap absorption is
compared with Edwards [43] and the lattice contribution
was extracted directly from [43]. At room temperature,
the absorption coefficient is very small and depends
strongly on the dopant concentration for k between 1.2
and 6 lm, where few reliable measurements exist. In the
intermediate temperature, the agreement of the present
model with the experimental data is not as good as that
of the empirical relation [47]. However, the empirical rela-
tion proposed by Vandenabeele and Maex [46] to model
free carrier absorption is only for wavelengths below
9 lm or so [33]. Also shown in Fig. 4 are data for lightly
doped silicon at k = 10.6 lm from Boyd et al. [52]: the
upper one was for 773 K and the lower one was interpo-
lated to 656 K. These two data points suggest that the
trend in the spectral absorptance by Rogne et al. [47]
may not necessarily continue towards longer wavelengths.

The predicted absorption coefficient for heavily doped
silicon is in reasonable agreement with the data given by
Schumann et al. [53] in the mid-infrared region at room
temperature and by Sturm and Reaves [48] at k = 1.3 lm
and 1.55 lm at elevated temperatures. The results will
not be shown here due to space consideration. It should
not be expected that the simple Drude model given in
Eq. (16) with limited parameters will describe the dielectric
function of silicon perfectly. Note that the effective mass
may depend on the temperature, dopant concentration,
and even frequency. The scattering rate may be frequency
dependent as well. Furthermore, the band structure of sil-
icon may be modified for heavily doped silicon. Neverthe-
less, the present model has captured the essential features
of the dielectric function of silicon, for wavelengths greater
than approximately 1 lm, at temperatures from 300 to
1000 K, and with a doping level up to 1021 cm�3.

The calculated optical constants, n and j, of silicon for
wavelengths between 1 and 100 lm are shown in Fig. 5 at
300 and 1000 K for an n-type dopant. In this spectral
region, the refractive index changes little for lightly doped
silicon even at high temperatures. The refractive index is
independent of the dopant concentration for lightly doped



Fig. 5. Calculated optical constants of n-type silicon for different doping levels: (a) refractive index at 300 K; (b) refractive index at 1000 K; (c) extinction
coefficient at 300 K; (d) extinction coefficient at 1000 K.
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silicon (ND 6 1015 cm�3) at 300 K and for ND up to
1018 cm�3 at 1000 K. The refractive index first decreases
and then increases rapidly towards longer wavelengths
for heavily doped silicon. This trend agrees with the mea-
sured results [53]. The carrier contribution to the extinction
coefficient at 300 K is very small for lightly doped silicon
and the lattice contribution can be clearly seen. As the dop-
ing level exceeds 1017 cm�3, the phonon features have been
screened out. This is also true for lightly doped silicon at
1000 K as the thermally excited carriers have a concentra-
tion of near 1018 cm�3. At 1000 K, j is essentially the same
for ND 6 1017 cm�3 and starts to increases with increasing
dopant concentration. At 300 K, however, except for the
interband absorption (k < 1.12 lm) and in the lattice
absorption region (6 lm < k < 25 lm), the calculated j will
continue to decrease with reducing dopant concentration
until it is below 1010 cm�3 when most of the carriers are
due to thermal excitation rather than the doping. The sig-
nificance is that the penetration depth, which is the inverse
of the absorption coefficient, will be very large for very
small j. In order for the silicon plate to be approximated
as a semi-infinite medium, the thickness must be much
greater than a�1 = k/4pj. Generally speaking, for doping
level under 1018 cm�3, j	 n except for very long wave-
lengths. This suggests that the real part of the dielectric
function is much greater than the imaginary part, that is
Re(e)� Im(e). For very heavily doped silicon, on the other
hand, the Drude model predicts that in the long-wave-
length limit, n � j; thus Im(e)� Re(e). Because the optical
constants for p-type silicon are very similar, in the present
work, only n-type silicon is considered for the calculation
of radiation heat transfer.

4.2. Nanoscale radiation for silicon

To calculate radiation energy flux, it is essential to eval-
uate the integration of the exchange function Z12(b) over
wavevector b from 0 to infinity, see Eq. (11), as well as
the integration of the spectral energy flux over all frequen-
cies, see Eq. (12). The integration over b from 0 to x/c cor-
responds to radiation heat transfer by propagating waves
and Z12(b) is expressed as Zprop(b) given in Eq. (13). In this
range the integrand exhibits highly oscillatory behavior for
large d. Simpson�s method is an effective technique in deal-



Fig. 6. Net energy flux between a 1000 K intrinsic silicon (medium 1) and
a 300 K silicon (medium 2) with different doping levels as a function of the
distance of separation.
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ing with oscillatory integrands [13]. In the present study,
Simpson�s method is used to carry out all the integrations.
The integration over b with the values of b from x/c to
infinity corresponds to radiation heat transfer by evanes-
cent waves or photon tunneling. The exchange factor is
given as Zevan(b) in Eq. (15). For small d values, the upper
limit bmax should be on the order of 1/d [5,9]; but for large d

values, 1/d would be less than x/c. In the present study,
bmax is chosen as 3/d or 100x/c, whichever is larger, to
ensure an integration error less than 1%. An effective way
to perform the integration is to break it into several parts
and evaluate each part using Simpson�s rule. For example,
the integration can be carried out in two parts, x/c <
b < 6x/c and 6x/c < b < bmax. A relative difference of
0.1% is used as the convergence criterion between consecu-
tive iterations.

For conventional radiation heat transfer calculations,
the lower and upper bounds of the integration over fre-
quency (or wavelength) can be selected such that 99% of
the blackbody emissive power falls between the limits.
For example, 99% of blackbody radiation emissive power
is concentrated between 1.2 and 25 lm at 1000 K and
between 4 and 85 lm at 300 K [2]. For silicon, the enhance-
ment of near-field radiation heat transfer is generally
greater at longer wavelengths and thus the integration
should be performed over a broader spectral region. In
the present study, the wavelength region was chosen from
0.94 lm to about 1.88 mm (x from 1012 to 2 · 1015

rad s�1).
Assuming that the dielectric functions are exact, the

overall computational uncertainty is less than 3%. The val-
idation of the computational code was performed by com-
paring the energy fluxes obtained from this study with
existing works, including those for two SiC media [6] and
two metallic media [7] using appropriate dielectric function
models. The program is in Matlab and runs on a personal
computer. It generally takes less than 30 minutes to evalu-
ate the total energy flux at a given distance for specific tem-
peratures and doping conditions with a computer speed of
3.2 GHz.

Fig. 6 shows the predicted radiation heat transfer
between two silicon plates. Medium 1 is intrinsic silicon
at T1 = 1000 K, whereas medium 2 is at T2 = 300 K and
its doping levels vary from intrinsic to heavily doped.
The dotted line is the far-field radiation heat flux between
two blackbodies, rðT 4

1 � T 4
2Þ, predicted by the Stefan–

Boltzmann law. Wien�s displacement law [2] suggests that
the dominant wavelength kmax for the 1000 K emitter is
around 3 lm. The energy flux is essentially a constant when
the distance d is greater than 10 lm, which is the far-field
regime. The net energy flux increases quickly when d < kmax

due to photon tunneling. When medium 2 is intrinsic or
lightly doped, ND2 < 1015 cm�3, the maximum q00net is
reached at d � 50 nm and changes little with further reduc-
tion of d. The maximum net energy flux is 21.3 times that
of the far-field limit and 11.7 times that with blackbodies
for intrinsic silicon. On the other hand, q00net for ND2 >
1016 cm�3 continues to increase as d is reduced and will
not saturate. Since the results for ND2 = 1017, 1019, and
1020 cm�3 are very similar to that for ND2 = 1018 cm�3,
only the last case is shown in the figure. The heat flux at
d = 1 nm with ND2 = 1018 cm�3 is 800 times greater than
that between two blackbodies.

If one of the media is a slightly absorbing dielectric, as
for silicon with a carrier concentration less than
1015 cm�3, the Fresnel coefficients beyond the critical angle
become imaginary because there is a propagating wave in
the medium and an evanescent wave in vacuum (corre-
sponding to frustrated total internal reflection). If the
refractive index of the dielectric medium is n, then Zevan(b)
will be non-zero for x/c < b < nx /c. However, because j is
negligibly small, Zevan(b ) will be very small beyond nx/c
and decay exponentially with increasing b. Therefore, for
lightly doped silicon, the enhancement is limited to approx-
imately ðn2 � 1ÞrðT 4

1 � T 4
2Þ and the near-field flux becomes

q00net � n2rðT 4
1 � T 4

2Þ, as shown in earlier works [1,11].
Because of the small difference between the refractive indi-
ces of the two media, here, n is used for both media for
simplicity. On the other hand, if j is not so small, the inte-
gration over b > nx/c may have a significant contribution
to the heat flux and eventually dominates the heat flux
when the distance d reaches a few nanometers, which is
the case for ND2 > 1015 cm�3.

The enhancement of near-field heat transfer can be bet-
ter understood by looking at the energy flux spectra shown
in Fig. 7. Notice that at 1000 K, the carrier concentration is
about 1018 cm�3. The spectral flux between two blackbod-
ies at 1000 K and 300 K calculated from Planck�s spectral
emissivity power [2,3] is also shown for comparison. Inter-
ferences become important at d = 10 lm and cause the



Fig. 7. Spectral energy flux for different separation distances between an
intrinsic silicon at T1 = 1000 K and medium 2 at T2 = 300 K: (a) medium
2 is intrinsic silicon; (b) medium 2 is n-type silicon with a donor
concentration ND2 = 1018 cm�3.
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wavy features in the spectral energy flux. When the receiver
is intrinsic, as shown in Fig. 7a, the shape of the spectrum is
similar at d < 100 nm and scaled up with n2 (� 11.7) times
that of the blackbody. However, the slightly increased j
due to phonon absorption and in the far-infrared due to
free carriers can result in an increase in the spectral energy
flux, while the increase is not significant enough to vary the
total flux. The near-field spectral flux is greatly enhanced
with doping as can be seen from Fig. 7b, especially in the
far-infrared region. As mentioned earlier, the increased
energy flux in the longer wavelengths requires the integra-
tion to be carried out much broader than that of blackbody
spectrum. The mechanism underlying the nanoscale
enhancement is discussed below.

At the nanometer scale when near-field radiation domi-
nates for doped silicon, the exchange factor from Eq. (15)
can be simplified. When b� x/c, c1 � c2 � c0 � ib. In this
case, rs
01 and rs

02 are negligibly small so that the contribu-
tion of s-polarized waves can be neglected. Furthermore,

rp
01 �

e1 � 1

e1 þ 1
and rp

02 �
e2 � 1

e2 þ 1

are independent of b. Therefore,

ZevanðbÞ �
Imðrp

01ÞImðrp
02Þe�2bd

j 1� rp
01rp

02e�2bd j2

Using the relation

Im
e� 1

eþ 1

� 	
¼ 2ImðeÞ
j eþ 1j2

the spectral heat flux from 1 to 2 in the limit d! 0 can be
expressed as

q00x;1�2 �
Hðx; T 1Þ

p2d2

Imðe1ÞImðe2Þ
ðe1 þ 1Þðe2 þ 1Þj j2

�
Z 1

x0

1� ðe1 � 1Þðe2 � 1Þ
ðe1 þ 1Þðe2 þ 1Þ e

�x

����
����
�2

xe�x dx ð23Þ

where x0 = 2dx/c. The heat flux will increase with d�2 as
the distance is reduced. The integral approaches 1 when

ðe1 � 1Þðe2 � 1Þ
ðe1 þ 1Þðe2 þ 1Þ

����
����	 1

and consequently, the net spectral flux becomes [6,9]

q00x;1�2 � q00x;2�1

� 1

p2d2

Imðe1ÞImðe2Þ
jðe1 þ 1Þðe2 þ 1Þj2

Hðx; T 1Þ �Hðx; T 2Þ½ �

ð23aÞ

When Eq. (23a) is used to calculate the spectral energy flux
at d = 1 nm for the case shown in Fig. 7b, the predicted val-
ues are nearly half of those obtained by integration in the
frequency region from 1012 rad s�1 to 1014 rad s�1. Note
that Eq. (23) is not applicable for x > 1014 rad s�1, where
the major contribution of evanescent waves is for x/c <
b < nx/c, i.e., propagating waves in silicon. Therefore, care
must be taken in applying Eqs. (23) and (23a) to interpret
the behavior of near-field thermal radiation.

The enhanced thermal radiation can also be understood
by the very large energy density in the vicinity of the sur-
face. The spectral energy density u(z, x) near the surface
of medium 1 at 1000 K is evaluated using Eqs. (8) and
(10), and the results are shown in Fig. 8 when the medium
is either intrinsic silicon or doped silicon with ND1 =
1020 cm�3. The energy density of a blackbody enclosure
is also shown for comparison. As the height z 6 100 nm,
the energy density is greatly enhanced because of the den-
sity of states increases rapidly as z decreases towards nano-
meter regime. Furthermore, the maximum appears at a
different wavelength compared to the maximum for
Planck�s blackbody distribution function. When b� x/c,
Eq. (10b) reduces to



Fig. 8. Spectral energy density near a semi-infinite silicon at T1 = 1000 K
at different distances from the surface: (a) intrinsic; (b) dopant concen-
tration ND1 = 1020 cm�3.

Fig. 9. Effect of doping on the net energy flux between heavily doped
silicon at T1 = 1000 K and T2 = 300 K: (a) q00net versus d for several ND2

values when ND1 = 1020 cm�3; (b) q00net at d = 1 nm versus ND2 for different
ND1 values.
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Devanðz;xÞ �
1

p2x
Imðe1Þ
j e1 þ 1j2

Z 1

x=c
e�2zbb2 db

By evaluating the integration, one obtains the following
asymptotical expression for z! 0, as shown in earlier stud-
ies [6,24–26]:

Devanðz;xÞ �
1

4p2xz3

Imðe1Þ
e1 þ 1j j2

ð24Þ

Eq. (24) suggests that the near-field density of states in-
creases with z�3 as z decreases, and is localized at the sur-
face. The dependence of ux on doping can be understood
by examining the term Im(e1)/je1 + 1j2. Because the plasma
frequency of silicon is pushed towards shorter wavelengths
by increasing the carrier concentration, Im(e1)/je1 + 1j2
increases significantly in the spectral region from 2 to
100 lm. Although ux for intrinsic silicon is larger towards
longer wavelengths, the contribution to the total energy
density is very small when x < 1013 rad s�1. Hence, the
near-field energy flux may increase further when the emitter
is heavily doped.

Fig. 9 shows the radiation heat transfer between heavily
doped silicon. In Fig. 9a, the 1000 K emitter is assumed to
have a fixed dopant concentration of ND1 = 1020 cm�3,
while the dopant concentration of the 300 K receiver varies
from ND2 = 1018 to 1021 cm�3. The results for ND2 =
1020 cm�3 is slightly lower but very close to that for
ND2 = 1021 cm�3 and thus not shown in the figure. As
expected, the nanoscale thermal radiation is enormous.
For example, at d = 1 nm, q00net 
 109 W m�2 or 15,000
times greater than that between two blackbodies. The effect
of doping on nanoscale radiation is further demonstrated
in Fig. 9b, where the separation distance is fixed at
d = 1 nm. When ND1 6 1019 cm�3, the effect of changing
ND2 is insignificant. However, for ND1 = 1020 to
1021 cm�3, increasing ND2 will result in increasing near-
field energy flux. Generally speaking, the enhancement at
nanometer scale is proportional to Imðe1ÞImðe2Þ

jðe1þ1Þðe2þ1Þj2 for given d
as discussed earlier.

In the previous examples, the temperatures of medium 1
and medium 2 are set at T1 = 1000 K and T2 = 300 K,
respectively, and the net radiation energy flux is calculated
for various doping concentrations of silicon. In order to
investigate the effect of temperature on the net energy flux,
the dopant concentrations of both medium1 and medium 2
are fixed at ND1 = ND2 = 1020 cm�3 and the net energy flux
is calculated for different values of T1 when T2 = 300 K.
The calculated net energy flux as function of d is presented
in Fig. 10a and the ratio of the energy flux from medium 1
to medium 2 to that of blackbody emissive power at T1 is
shown in Fig. 10b. When T1 = 400 K, q00net at 1 nm distance
can exceed 1.45 · 108 W m�2, which is 146,000 times the
net heat flux between two blackbodies placed far apart.



Fig. 10. Effect of source temperature on the radiation energy flux between
two doped silicon with ND1 = ND2 = 1020 cm�3 and T2 = 300 K: (a) q00net

versus d for T1 from 400 to 1000 K; (b) the energy flux from medium 1 to
medium 2 normalized by rT 4

1.
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When q001�2 is compared with rT 4
1, as shown in Fig. 10b, the

enhancement is greater when T1 is closer to 300 K and
reaches � 2 · 105 when T1 = 400 K at d = 1 nm. Even at
d = 10 nm, the enhancement is significant for a number
of applications, such as enhanced heating and cooling for
thermal control and energy conversion near room
temperature.

4.3. Discussion

The enhancement of near-field radiation energy flux
obtained from this work is consistent with that obtained
by Marquier et al. [22] for heavily doped silicon near room
temperature. For SiC, the enhanced near-field radiation
has been attributed to surface phonon polaritons
[6,13,20,21]. For doped silicon, free-carrier absorption
dominates and thus it is helpful to examine the resonance
conditions to see whether surface plasmon polaritons can
be excited and thus are responsible for the enhancement.
A surface polariton is a coupled, localized electromagnetic
wave that propagates along the interface of two different
media and decay exponentially away from the interface.
A necessary requirement for the excitation of surface plas-
mons at the interface between vacuum and a medium is
that Re(e) must be negative and Im(e) should be sufficiently
small [54]. This can occur with metals (like silver and alu-
minum) at frequencies lower than the plasma frequency,
defined as xp ¼ N ee2=e0m�e , but much higher than the elec-
tron scattering frequency [26]. The resulting Fresnel�s
reflection coefficient for p-polarization approaches infinity
in the lossless case. For doped silicon, the plasma frequency
is in the infrared region. Because of the large scattering rate
(1/s), Re(e) may never be negative; and even in the case
when Re(e) is negative, Im(e) is too large for surface plas-
mons to be excited. Therefore, the enhancement of nano-
scale radiation may be understood by the large values of
the exchange function around the plasma frequency where
Im(e)/j1 + ej2 is large for both media. Although surface
plasmon resonance condition is not satisfied, there exist
evanescent waves in vacuum as well as in the media for suf-
ficiently large b values. The near-field energy flux spectrum
for Si exhibits a broad peak when the doping concentration
is less than 1018 cm�3 as can be seen from Fig. 7. The spec-
tral width of the heat flux peak decreases with increasing
doping level but is still much broader than that for SiC.

It is instructive to compare the nanoscale thermal radi-
ation with heat conduction by air since many AFMs are
operated in ambient conditions. When d is much smaller
than the mean free path, which is about 70 nm at standard
atmospheric conditions, boundary scattering or ballistic
scattering dominates gas conduction. The thermal conduc-
tivity decreases linearly as d decreases, whereas the heat
flux is independent of d in this regime. Assuming a thermal
accommodation coefficient of 1, the heat transfer by gas
conduction can be estimated by [55]

q00cond ¼
cvðcþ 1ÞP
ð8pRT mÞ1=2

ðT 1 � T 2Þ ð25Þ

where R is the ideal gas constant, P is the pressure,
T m ¼ 4T 1T 2=ð

ffiffiffiffiffi
T 1

p
þ

ffiffiffiffiffi
T 2

p
Þ2 is a mean temperature, and cv

is the specific heat at constant volume evaluated at Tm.
The resulting q00cond for air at a pressure P = 1 atm is
approximately 1.1 · 107 W m�2 for T1 = 400 K and
T2 = 300 K, and it increases to 6.3 · 107 W m�2 when
T1 = 1000 K. Therefore, at d = 1 nm, near-field radiation
heat transfer with heavily doped silicon can be an order
of magnitude greater than heat conduction by air at the
atmospheric pressure. Because the conduction heat flux
further decreases as the pressure is reduced, nanoscale ther-
mal radiation may dominate the heat transfer process for
scanning thermal probes and heated cantilever tips using
heavily doped silicon.

The radiation heat transfer coefficient can be defined as
hr ¼ q00net=ðT 1 � T 2Þ in analog to Newton�s law of cooling. It
can be seen from Fig. 10a that for heavily doped silicon
hr 
 106 W m�2 K�1 at d = 1 nm and hr 
 104 W m�2 K�1

at d = 10 nm. It is important to estimate whether the local
equilibrium assumption is valid. Assuming that the near-
field radiation penetration depth is 100 nm and a thermal
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conductivity for doped silicon is 100 W m�1 K�1, for a heat
flux of 109 W m�2, the temperature drop would be 1 K
within the radiation penetration depth. Therefore, the local
equilibrium assumption should still be valid. However, for
a wafer of 100 lm thick, the temperature drop would be
1000 K. The above calculations suggest that indeed near-
field radiation can be an effective way of heating and cool-
ing. As an alternative to the parallel-plate configuration,
it is possible to pattern one of the silicon wafers with a
two-dimensional array of truncated cones or pyramids to
remove heat locally for thermal control in nanoelectronics,
for example.

5. Conclusions

The nanoscale thermal radiation between two closely
spaced semi-infinite media is systematically investigated
for silicon with varying dopant concentrations and tem-
peratures, under the framework of fluctuational electro-
dynamics. A Drude model that considers the effects of
temperature and dopant concentration on the free carrier
concentrations and scattering times is adopted here after
a careful parameter selection and comparison with existing
optical property data. Enormous enhancement in nano-
scale radiation heat transfer has been found for heavily
doped silicon. At the separation distance of 1 nm, the net
energy flux can exceed 109 W m�2 with (n-typed) silicon
emitter at 1000 K and receiver at 300 K, for dopant con-
centrations of ND1 = ND2 = 1021 cm�3. The calculated heat
flux is 10 times that of air conduction at atmospheric pres-
sure. The radiation heat transfer coefficient can be
hr 
 106 W m�2 K�1 at d = 1 nm and hr 
 104 W m�2 K�1

at d = 10 nm. The enhancement of radiation heat transfer
at the nanoscale may have an impact on the development
of near-field thermal probing and nanomanufacturing tech-
niques. The theoretical understanding gained from the
present study will facilitate the design of experiments that
utilize near-field heat transfer to enhance heating or cool-
ing at the nanoscale.
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